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ABSTRACT
We address the problem of determining what data has been
leaked from a system after its recovery from a successful
attack. This is a forensic process which is relevant to give
a better understanding of the impact of a data breach, but
more importantly it is becoming mandatory according to the
recent developments of data breach notification laws. Exist-
ing work in this domain has discussed methods to create dig-
ital evidence that could be used to determine data leakage,
however most of them fail to secure the evidence against ma-
licious adversaries or use strong assumptions such as trusted
hardware. In some limited cases, data can be processed in
the encrypted domain which, although being computation-
ally expensive, can ensure that nothing leaks to an attacker,
thereby making the leakage determination trivial. Other-
wise, victims are left with the only option of considering all
data to be leaked.

In contrast, our work presents an approach capable of
determining the data leakage using a distributed log that
securely records all accesses to the data without relying
on trusted hardware, and which is not all-or-nothing. We
demonstrate our approach to guarantee secure and reliable
evidence against even strongest adversaries capable of taking
complete control over a machine. For the concrete applica-
tion of client-server authentication, we show the preciseness
of our approach, that it is feasible in practice, and that it
can be integrated with existing services.

Keywords
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1. INTRODUCTION
Recent security incidents, such as those at JP Morgan [23],

Adobe [15] and Sony [3], have shown how the leakage of (of-
ten personal) data can have a high economical and societal
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impact. US and European governments have noticed these
effects and started to introduce breach notification laws [7,
9], where companies are obliged to disclose to the govern-
ment the details of a data breach, and to notify individuals
of security breaches where personal identifiable information
was involved. In some states in the US [13] and some EU
member states such laws are already being applied, and it
will likely involve other countries in the near future. This
leaves companies with the problem of determining what data
has been leaked after a data breach. In this work we focus
on the problem of determining the data leakage for those
cases where companies collect and process customer data to
provide a specific service, or to improve the quality of an
existing service.

Determining the data leakage is a forensic process, and as
such, it needs digital evidence that allows the company to
retrieve the information about what data has been leaked.
Existing work on data leakage focuses on prevention by pro-
viding Data Leakage Prevention solutions [25, 24, 36]. How-
ever, these solutions cannot be used to determine the data
leakage in case the prevention fails. The most promising ex-
isting solutions are provenance-aware systems [22, 11, 26],
which record the entire data life cycle including its origin and
where it moves. Unfortunately, these works make strong as-
sumptions on what the attacker cannot do (e.g., the attacker
cannot access the OS kernel), which is unrealistic given the
occurrences of sophisticated malware in data breaches [20],
and the recent increase of rootkit development [19]. This
lack of solutions against such powerful attackers, has only
been recently addressed by Bates et al. [2] who proposed
LPM, a Linux kernel module capable of collecting and pro-
tecting evidence against such an attacker. Unfortunately,
LPM’s security mainly relies on trusted hardware. Trusted
hardware, which is invasive because it imposes significant
changes to the infrastructure, often is not a feasible option
for companies. This leaves companies without a solution to
create evidence to determine data leakage.

There exist cryptographic techniques, such as fully ho-
momorphic encryption (FHE) [12] and secure multi-party
computation (MPC) [34], which allow data processing in
the encrypted domain. Applications using these techniques
do not require digital evidence since data is protected by
cryptographic means. Therefore, determining the leakage is
trivial, because nothing leaks to an attacker. However, these
techniques are computationally expensive and only suitable
in limited practical scenarios. Consequently, most of today’s
data breach victims have no other option than considering
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all data to be leaked.
Our main contribution is an approach capable of deter-

mining the data leakage that is not just all-or-nothing. Our
solution is able to create tamper-resistant evidence against
adversaries capable of taking complete control of a machine.
Our approach does not rely on any trusted hardware. Lastly,
we demonstrate for the specific application setting of client-
server authentication that our solution is feasible in practice,
and that it can be easily integrated with a existing services.

2. EVIDENCE FOR DATA LEAKAGE DE-
TERMINATION

A company that wants to determine what data has been
leaked needs digital evidence that describes what happened
in the system. We consider data to be leaked if an attacker
could have had access to it. The evidence is a digital data
structure, for instance a log file, that records all the accesses
to the data. When the company knows when and what has
been compromised in its system, for instance through an In-
trusion Detection System (IDS), it can determine from the
evidence what data has been accessed in that period of time
by specific machines or users. This represents the data leak-
age. However, the evidence can be targeted by an attacker
who wants to cover his traces. For example, an attacker
often wants to modify the evidence to remove any indica-
tion that he had access to the data. This would result in
an imprecise determination of data leakage. Therefore, the
evidence should meet certain requirements in order to be
considered a reliable source of information. We define such
requirements as follows: 1) Tamper-Resistance, any unau-
thorized modification to the evidence should be detectable;
2) Availability, the company should be able to access untam-
pered evidence at any point in time; 3) Trustworthiness, the
evidence should not be forgeable, so it should not be possi-
ble to append fake records to the evidence; 4) Completeness,
the evidence should contain records for all the accesses on
plaintext data that happened in the system.

In case there is no evidence or the evidence does not meet
the requirements, the company must consider all data to
be leaked. This holds for all scenarios where compromised
machines process data in plaintext. The company cannot
prove without trusted evidence that only specific data items
have been leaked to the attacker. In scenarios where ac-
cess to data is restricted by cryptographic techniques (e.g.,
FHE [12] or MPC [34]) and data is processed in the en-
crypted domain, nothing can be considered leaked. However,
even the results of computations remain encrypted and can
be decrypted only by interacting with the client who knows
the decryption key. Moreover, these techniques are known
to have severe limits in performance and functionalities in
practice, especially in presence of active attackers that try
to cheat during the protocol execution.

We propose an approach that creates evidence of data ac-
cess and fulfills the above requirements. We demonstrate our
approach to be neither all nor nothing. Our approach avoids
the drawbacks of fully encrypted solutions [12] by perform-
ing computations on plaintext data, but instead it creates
reliable evidence to determine data leakage more precisely
than simply stating all data has been leaked.

3. INTUITION OF OUR APPROACH
First let us assume that a central server is responsible for

creating and maintaining digital evidence for all accesses to
data. If this machine is compromised by a powerful attacker,
for instance by using a kernel rootkit, there is no solution to
protect the evidence from being tampered with or deleted
by the adversary unless trusted hardware is used [2]. Now
we assume that there are two machines, A and B, where A
sends its data access information to B and B stores the evi-
dence for A. If an attacker compromises A, he can send fake
information to B. There is no way for B to distinguish real
from fake information, so the evidence stores fake records,
which breaks the trustworthiness requirement. This is also
true in case there are nmachines and A sends its information
to N1, . . . , Nn−1. As long as a machine is solely responsi-
ble for the content of its own evidence, and this machine
can be compromised, it is not possible to guarantee all the
requirements discussed in Section 2. All common logging
mechanisms work as just described.

Our approach inverts this process. It is not A to tell the
n − 1 other machines what it had access to, but the n − 1
machines tell A what it is going to access. So, the n − 1
machines store in the evidence that A had access to a spe-
cific data item. This approach can be considered a general-
ized digital analogue of the four-eyes principle (n-eyes in our
case), which requires two individuals to approve some action
before it can be taken. We enforce this approach by requir-
ing data to be encrypted at rest and decrypting it (making
it accessible) only when it is needed for processing. This
decryption step can be done only through the collaboration
of multiple machines that carefully log this process.

4. BACKGROUND
In this section we introduce the building blocks used in

our approach and discuss the choice of the specific imple-
mentations.

Byzantine Fault Tolerant Consensus Protocol. Byzan-
tine fault tolerant consensus protocols are a form of state
machine replication, such that a set of n distributed nodes
can behave consistently as a centralized implementation exe-
cuting operations atomically one at a time. These protocols
survive f Byzantine failures. We decided to use PBFT [5]
because it is a widely accepted in practice and because it
provides strong consistency guarantees despite a communi-
cation complexity of O(n2). However, other Byzantine fault
tolerant consensus protocols can be used (e.g., [6, 16]). In
PBFT there are n = 3f + 1 nodes, and they move through
a sequence of configurations called views. Within each view
one node is the primary node. The primary node is respon-
sible to forward client requests for operations to other nodes
and to propose the order of their execution. A request is
executed if at least 2f + 1 nodes have accepted it. When
a request is executed, a reply message is sent to the client.
When the client receives 2f +1 reply messages, he considers
the operation to be successfully executed. Moreover, nodes
periodically generate checkpoints, which are proofs confirm-
ing that at least 2f+1 nodes have executed the same number
seq of requests. In case the primary node is considered com-
promised, all nodes start a change-view procedure, which
elects a new primary node.

t-out-of-n Secret Sharing. Secret sharing (SS) is a cryp-
tographic primitive that allows any party to split a data
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item s into a set of n shares, such that any combination of
t shares, where t ≤ n, can be used to reconstruct s. In
our case we consider t = f + 1 and n = 3f + 1. The data
item s can be recovered only if at least f+1 shares are com-
bined. Therefore, until at least one correct node reveals its
share, the attacker learns nothing about s. A secret sharing
scheme provides the following algorithms:

• Split(s)→ {s1, . . . , sn} generates a set of n shares from
a data item s.

• Combine({si}f+1
i=1 )→ s combines a set of shares to ob-

tain the original data item s (or ⊥ if there are less than
f + 1 valid shares).

In this work we propose to use AONT-RS [29] for its per-
formance. Compared to Shamir Secret Sharing [30], AONT-
RS provides better storage efficiency1 and faster split and re-
construction of secrets. AONT-RS is computationally secure
(based on AES), and does not require a phase to distribute
encryption keys.

Commitment Scheme. A commitment scheme is a cryp-
tographic primitive that involves two parties: a committer
and a receiver. The committer can commit to a specific value
x, without revealing x to the receiver (i.e., hiding property),
unless the committer itself reveals it. Once the committer
commits to x, he cannot change it (i.e., binding property).
A commitment scheme provides the following algorithms:

• Commit(x) → c generates a commitment message for
a value x.

• Reveal(x, c)→ 1/0 verifies if x is the committed value
for c.

In this work we use the simple hash-based construction
that commits to a value x by computing H(r||x) for a ran-
dom r and a cryptographic hash function H(·) (modeled as
a random oracle). However, other schemes might be used as
well.

Digital Signature Scheme. A digital signature is a cryp-
tographic primitive that allows a signer to authenticate a
message, and a verifier to verify the authenticity of that
message. A digital signature scheme provides the following
set of algorithms:

• KeyGen(1λ)→ (pk, sk) generates a signing key pair.

• Sign(sk,m)→ σm generates a signature for a message
m.

• Verify(pk,m, σm) verifies a signature on a message m.

In this work we use RSA. Other digital signature scheme
can be used as well.

Hash Chain. A hash chain is a consecutive application of
a cryptographic hash function H to multiple data items that
binds all of them to a single value. Given a family of events
{Ei}li=1, the value stored in the hash chain for each event Ei,
is Li = H(Li−1||Ei), where Li−1 = H(Li−2||Ei−1). Each
new entry is directly linked with the previous event, and the
base hash L0 is a predefined value.

1For example, given a 4 KB data block to divide 10-out-
of-16 shares, Shamir Secret Sharing requires 64 KB, while
AONT-RS needs 6,45 KB [29].

5. SYSTEM AND ADVERSARY MODEL
Consider a scenario where users can upload data to a com-

pany infrastructure which can run computations over this
data, either on the user’s or system’s demand. The com-
pany is responsible for the data storage and the computa-
tion. Moreover, it wants to deploy a mechanism capable of
reliably determining the data leakage in case its infrastruc-
ture was compromised.

We consider the company’s infrastructure to be a dis-
tributed asynchronous system composed of n nodes, which
log and execute the operations requested by clients. The set
of possible operations is determined by the specific applica-
tion. Each node has an append-only log, which describes
all operations ran by the system and can be used to de-
termine the data leakage. The nodes are connected by a
network that may: fail to deliver messages, deliver them
out of order, duplicate them, or delete them. We assume
a Byzantine failure model, where faulty/compromised nodes
might behave arbitrarily (e.g., a compromised node does not
necessarily follow the protocol). Nodes are non-faulty/non-
compromised if they behave according to the protocol. Our
approach guarantees that clients eventually receive replies to
their request (liveness property) and those replies are cor-
rect according to linearizability (safety property) if we as-
sume that: the attacker can compromise at most f machines,
where f = �n−1

3
�; the attacker is computationally bounded,

so he cannot break cryptographic primitives; there is a delay
T between the first time a message is transmitted and when
it is received by a non-compromised node, where T does not
grow indefinitely [10]. The latter assumption appears to be
reasonable in practice if network faults are quickly repaired.
We also assume the company deploys security solutions that
can detect compromised machines and determine the period
of compromise (e.g., IDSs).

We consider a strong adversary that can take complete
control over the machines he compromises by using a ker-
nel rootkit. However, we assume compromising a machine
is time consuming and a difficult task even for a skilled at-
tacker. On these machines the attacker can tamper, disable
or permanently delete any possible evidence. The attacker
is adaptive, so he is allowed to compromise any machine and
his choice may depend on previous information. Finally, the
attacker can also coordinate the compromised machines to
disrupt or to compromise the service.

Security Requirements for a Reliable Log
A log needs to fulfill the following security requirements to
be considered reliable to determine the data leakage:

Tamper-Resistance: any unauthorized modification of the
log, such as addition, removal or content modifications of a
log entry ei, should be detectable.

Availability: it should not be possible to remove all copies
of the log from the system.

Trustworthiness: the log of a non-compromised node should
contain only events that have been requested by legitimate
events. An attacker should not be able to convince non-
compromised nodes to log events that were never requested.
The difference to tamper-resistance is that the attacker may
try to remotely influence the log of other nodes by hijacking
the protocol.
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Completeness: the log should store all the accesses on
plaintext data. An attacker should not be able to access
any plaintext data item without being recorded by non-
compromised nodes.

6. A DISTRIBUTED LOG AS EVIDENCE
In this section we discuss our approach for a reliable dis-

tributed log to determine data leakage. As discussed above,
we combine threshold cryptography and Byzantine consen-
sus to achieve this goal.

As follows from our high level description in Section 3,
we see two important requirements: 1) a single node can-
not access data without the consent of other nodes, and 2)
a group of nodes should agree on when and what data a
node can have access to. We address the first requirement
using threshold cryptography, which enforces that t shares
are needed to access the data. A lower number of shares
does not reveal any information about the data. We address
the second requirement using a Byzantine consensus proto-
col, guaranteeing consistency in the execution of operations
among distributed nodes, despite (at most) f of them may
be compromised. With this protocol, all nodes can agree on
which data items a specific node can access, send the cor-
rect shares to the same node, and log the access to the data
consistently with the other nodes.

As a consequence of the liveness and safety properties of
a Byzantine consensus protocol (see Section 5) this setup
requires n = 3f + 1 machines, where f is the number of
compromised nodes. Considering this strict requirement,
we define the threshold for Secret Sharing as t = f + 1.
This is the lowest value that guarantees that the attacker
cannot read the data, since the system assumes at most f
compromised machines.

6.1 Creating Evidence of Data Access
We assume a finite universe of clients that can request to

upload data, or to perform computations over data stored
in a distributed system N = {n1, . . . , nn} composed of n
nodes, where n = 3f + 1, and f is the maximum num-
ber of nodes that can be compromised by an attacker. All
clients and nodes have a public-private key pair (pk, sk) ←
KeyGen(1λ). All public keys pk are known to each node.
Node keys are securely shared when the system is deployed,
while client keys are securely shared at the time of client
registration to the system. We assume the attacker is not
present at registration time, and we assume clients to be
trusted. We note that this is a simplified setup that con-
siders clients to be trusted and authenticated. We also dis-
cuss our approach for scenarios with untrusted clients in
Section 6.1.4.

6.1.1 Requests Need to be Accepted and Logged
Clients interact with the distributed system by sending

upload requests or to perform query requests. These requests
have to be accepted and logged by each node before being
executed. This process is performed in the three-phase pro-
tocol of PBFT, as shown in Figure 1a.

In both cases, a client generates a request REQ, which
describes the operation the client would like to run. He
generates its signature σREQ ← Sign(sk, REQ), and he sends
the signed request 〈REQ, σREQ〉 to the primary node, which
then forwards it to all nodes (pre-prepare). Each node ac-
cepts 〈REQ, σREQ〉 if Verify(pk, REQ, σREQ) = 1 and if the mes-

sage is formatted as specified by the protocol (see below
Section 6.1.2 and Section 6.1.3), otherwise it is discarded.
Please note that PBFT has additional checks during the ex-
ecution of its protocol, which are independent from our so-
lution. We refer to the original work for further details [5].

If 〈REQ, σREQ〉 is accepted, nodes broadcast their decision to
other nodes (prepare and commit phases). When a node re-
ceives 2f + 1 responses during the commit phase, it logs
〈REQ, σREQ〉. Each log entry ei = (i, 〈REQ, σREQ〉, Li) has a
sequence number i, the content of a request along with
its signature 〈REQ, σREQ〉 and a recursive hash value Li =
H(Li−1||REQ). Li links REQ to its previous request.
Once ei is stored, each node sends a signed reply message

back to the client. The client considers REQ to be successfully
logged if it receives at least 2f+1 signed reply messages from
distinct nodes. At this point, REQ is executed.

6.1.2 Upload Requests
Clients can store new data items on the nodes or update

existing items. An upload request REQU = 〈ID, ts, σREQU 〉 has
an identifier ID of the item the client wants to upload, a
timestamp ts and a digital signature σREQU . The request is
sent to the nodes for approval and logging, following the
process discussed above.

After receiving 2f + 1 reply messages, the client runs
Split(D)→ {s1, . . . , sn} and generates n shares for the item
D that has ID as identifier. Finally, as shown in Figure 1b,
the client sends to each node ni a message 〈ID, si, ts, σd〉
containing: the identifier ID, a share si of D, a timestamp
ts, and a signed digest σd where d = H(ID, si, ts).
Each node accepts the share si if the following verifications

steps succeeds (otherwise, it discards it): 1) compute d from
the received message and check that Verify(pk, d, σd) = 1,
and 2) if a request REQU with same ID and from same client
was already logged (Section 6.1.1). If another share si is
stored with the same ID, it is overwritten with the new share.
Otherwise si is stored as a new item with identifier ID.

Although the information stored in REQU does not influ-
ence the determination of data leakage, it is stored in the
log to avoid possible data inconsistency in case of concurrent
updates. For instance, if two clients are concurrently trying
to update the same data item, all non-compromised nodes
can decide, based on the log, to keep only the shares of the
latest request they executed.

Replay attacks are possible, but do not affect the determi-
nation of data leakage and can be easily prevented by inte-
grating orthogonal techniques in the protocol (e.g., nonce).

Upload by Nodes. A non-compromised node uploads data
only if a client specified it in a query request REQQ with a
write(ID) command (see Section 6.1.3). An upload request
REQU is generated and processed through PBFT as a client’s
request. The identifier ID for the new item is the one spec-
ified in the write(ID) command.

A node accepts the request if: 1) after computing d from
the received message, Verify(pk, d, σd) = 1; 2) there exists a
query request REQQ that specifies a write(ID) command such
that ID matches the identifier in REQU ; and 3) the node that
generated REQU is the same node that executed REQQ, and
no upload requests have been accepted yet for that write
command. The rest of the protocol follows as in the client
case.
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Figure 1: Overview of the interaction between a client and four nodes: a) (§ 6.1.1) shows the common process for each request,
which is validated and logged through the PBFT protocol [5], where n0 is the primary node; b) (§ 6.1.2) shows how data is
uploaded once the request has been logged, where the client t-out-of-n secret shares a secret s, and sends each share si to
each node; c) (§ 6.1.3) shows how the computation is performed once the request has been logged, where the execution node
(n1) receives the shares needed to reconstruct the data, performs the computation and sends back the result to the client.

Upload failure. It is possible that REQU is logged, but the
shares are not sent or delayed. Once REQU is stored, each
node starts a timer. All following requests that involve the
uploaded item are logged and queued. Once the shares have
been successfully received, requests are executed on the new
item. If the timer reaches a globally set timeout value, the
log is “rolled-back”. REQU is removed from the log, the hash
chain is updated and the following requests are executed on
the old item.

Timeouts can be exploited by an attacker to degrade the
performance of the system (e.g., wait for shares and delay
computations), however these denial of service attacks do
not influence the determination of data leakage.

6.1.3 Query Requests
Clients can perform computations over data stored on the

nodes. A query request REQQ = 〈D, O, r, ts, command,σREQQ〉
has a set D of unique data item identifiers, an operation O to
apply to the data, a uniformly distributed random number
r, where 0 ≤ r ≤ n− 1, a timestamp ts, a command read or
write(ID), and the signature σREQQ .
D is the set of items requested for the computation. O is

any possible computation allowed by the application. r is a
random number used to select the execution node. This node
is responsible for reconstructing the data from the shares,
performing the requested computation and returning the re-
sult to the client. The execution node for a request is the
node ni = r. The command write(ID) is used by a client
when he wants to retrieve the result of the computation and
then store it in the system with the specified identifier ID.
A client uses a read command if he only wants to retrieve
the result.
REQQ is validated and logged as discussed in Section 6.1.1.

If accepted, each node retrieves the set of requested shares
S = {s1, . . . , sm} where m = |D|. Each node sends S to the
execution node. The execution node waits until it receives

at least f+1 set of shares (including its own). It reconstruct

each requested item in D such that D ← Combine({si}f+1
i=1 ).

It executes the requested operation O over the reconstructed
set of items. Lastly, it sends the result of the computation
to the client. This process is shown in Figure 1c. The ex-
ecution node deletes all the received set of shares and the
reconstructed data. Finally, it verifies whether a write(ID)
command is specified in query request or not. If so, the
results need to be uploaded through an upload request.

It is worth noting that if k shares are generated and up-
loaded instead of n, where k < n, the attacker may be able
to block the execution of a query request by not sending the
share he stores. We choose to generate n shares to guarantee
the functionality of the system in a Byzantine model.

Execution Node Unavailable. In case the execution
node is not available at the time the shares are being trans-
mitted, all nodes run an instance of the protocol discussed
in Section 6.1.5, which allows distributed nodes to agree on
selecting a random execution node. The shares are then
retransmitted to the new execution node.

The execution node might also fail to deliver the result
of the computation to the client after it received the shares.
For instance, the attacker controls the execution node of a
specific request and wants to disrupt the service. There-
fore, a client expects a response from the execution node
within a predefined timeout. If the timeout is exceeded, the
client generates a new query request with a different execu-
tion node. A compromised execution node can send wrong
computation results to the client. Overcoming this problem
is not the goal of this work. However, this does not affect
the determination of leakage provided by our solution, be-
cause the nodes already logged all the data the (in this case)
compromised execution node had access to. This happens
independently from a successful or unsuccessful execution.
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6.1.4 Untrusted Clients
In certain application scenarios, we cannot assume clients

to be trusted. When assuming clients to be untrusted, we
cannot rely on the authentication based on cryptographic
keys.

This affects our approach in three ways: 1) a compro-
mised primary node can successfully execute requests that
were never generated by a client, because nodes cannot ver-
ify a request’s authenticity; 2) a compromised node can gen-
erate fake client requests, and append them in the log while
maintaining a consistent hash chain; 3) if an attacker com-
promises one node of the system, he can pretend to be any
client and generate fake requests. He can modify r in REQQ,
such that r = ni and ni is the node he controls, so it gets
always selected as execution node. These issues are related
to the verification and logging process of requests, shown in
Figure 1a.

The first problem breaks the Trustworthiness requirement
discussed in Section 5. To solve this problem, clients broad-
cast their requests REQ to all nodes, instead of forwarding
only to the primary node. Then the primary continues the
PBFT protocol as usual. Non-compromised nodes accept
REQ if they have received two copies of it, one from the pri-
mary node and one from the client. Thus, if a compromised
primary node forwards fake requests, they are rejected by
all non-compromised nodes.

The second problem breaks the Tamper-resistance require-
ment. This problem is solved by including the checkpoints
generated by PBFT (see Section 4) in the log. A checkpoint
is included in a log entry along a hashed value that links
it to the previous request REQ. Checkpoints are generated
periodically after z requests. An attacker cannot forge a
checkpoint because he cannot forge the signature of 2f + 1
nodes. He can forge at most z − 1 requests without being
detected. However, the attack is detected as soon as the
z-th request is stored and the checkpoint is created.

The third problem affects the random number r in REQQ.
Manipulating this value can guarantee to an attacker the ac-
cess to the data. We solve this problem by removing r from
a query requests, and forcing nodes to agree on a random
number without involving the client. After accepting REQ,
all nodes run a distributed protocol to randomly select an
execution node. The details of this protocol are discussed in
Section 6.1.5. As consequence, even if an attacker controls
a node and can impersonate an untrusted client, he cannot
deterministically analyze data in plaintext on machines he
controls. However, there is no way to prevent a compromised
client to access the result of the computation.

A collusion of an untrusted client and a compromised
node, can lead an attacker to attempt accessing any other
users data, and the lack of digital signatures impede the
nodes to determine whether those requests are originated
by the owner of the data or not. However, the attacker has
no control over the random selection of the execution node,
which is the only node that can access the plaintext of a re-
quest. Therefore, even in case of collusion, the attacker has
no guaranteed access to the data. The attacker can send (or
replay) multiple requests to increase his chances to have his
compromised node selected as execution node. This misuse
can be limited by enforcing security policies such as limiting
the number of requests on certain data.

Lastly, although the attacker can access more data by
compromising clients, the log is still able to reliably deter-

mine the data leakage, and it is not affected by the collusion.

6.1.5 Collaborative Selection of the Execution Node
This protocol allows distributed nodes to agree on a spe-

cific random number, which is used to select the execution
node for query requests. The selection is guaranteed to be
random as long as the attacker cannot compromise more
than f machines. This protocol is used in two occasions: in
presence of untrusted nodes (see Section 6.1.4), or in case
the execution node of a request is not available and a new
node should be selected (see Section 6.1.3).

Each node ni generates a value xi uniformly distributed at
random. xi is the value used to select the execution node.
Each node computes a commitment ci ← Commit(xi). In
our specific scenario Commit(xi) = H(Ri||xi) for a crypto-
graphic hash function H and some random value Ri. Each
node sends ci to the primary node. The primary node selects
a set F = {c1, . . . , cf+1} of commitments, and forwards it
to each node. Each node ni check if its commitment ci is in
F . If so, it sends xi and Ri to the other nodes. Each node
verifies the commitments Reveal(xi, ci) = 1, ∀ci ∈ F . If they
are all correctly verified, the execution node is computed as
r =
∑

i∈F xi mod n− 1.
In case the primary node does not forward F , it is con-

sidered compromised and all nodes start an instance of the
change-view protocol (cf. Byzantine Fault Tolerant Consen-
sus Protocol in Section 4) to select a new node as primary
node. Nodes selected to reveal their committed value can
also be compromised and do not reveal xi. For this rea-
son, there exists a timeout that limits the waiting time of
revealing the commitments. In case the timeout is exceeded
of which the duration is application-dependent, the primary
node sends another set F ′ of commitment, that differs from
F only for those commitments that were not revealed within
the timeout.

The Benefit of using a Commitment Scheme. Suppose
every node ni in the system broadcast a random value xi

to all other nodes, and the sum of all those values is the
execution node. A compromised node can wait until all other
n − 1 nodes broadcasted their value. At this point, the
attacker can compute the sum S of these values and he can
choose a value xi such that xi + S = ni, where ni is a
compromised node. This attack could not be detected given
the asynchrony of the network.

The commitment scheme impede a compromised node learn-
ing what other nodes have committed to, unless they pur-
posely reveal it, or allowing an attacker to change its value
after it has been already committed. Therefore, the attack
just described would not work. Our approach also resists
at the adversary model described in Section 5, because even
though an attacker controls f nodes, including the primary
node, he has to select a set of f + 1 commitments. There-
fore, there is always at least one value that is uniformly
distributed at random, which guarantees r to be random as
well.

6.2 Determining Data Leakage using the Dis-
tributed Log

As discussed in Section 5, we assume the company knows
the setM of compromised machines, and the period of com-
promise (Tbegin-Tend). This information is often the result of
a breach investigation. Typically, Intrusion Detection Sys-
tems are deployed in order to detect whether a machine is
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compromised. The detection of attacks is an independent
research direction, and it is outside the scope of this work.

Algorithm 1 describes how to determine the data leakage
from a log V . First, it verifies the integrity and authenticity
of the content of each entry ei (Line 4). Then, it verifies
the integrity of the position of ei (Line 5). If any of these
two steps fails, V is considered tampered and discarded.
Otherwise, Algorithm 1 checks if ei describes a computation
over a compromised node within the period of compromise
in Line 7. If so, the set D of items is added to a list of leaked
items. This process is repeated recursively on each entry in
the log. Lastly, Algorithm 1 returns the list of leaked items.
The data leakage is determined by identifying all data items,
within the period of compromise, accessed by a compromised
nodes.

For scenarios where clients are trusted, it is also possible to
determine the data leaked to a specific compromised client.
This can happen in case of malicious insiders, which is also
a severe threat scenario in data breaches.

Algorithm 1 Determination of Data Leakage

Require: M is the set of malicious machines, where |M| ≤
f ; Tbegin is the time when the breach started; Tend is
the time when the breach finished; a log V from a non-
compromised machines. Let us consider j as the client
who signed the request REQ.

1: procedure Data Leakage(V,M, Tbegin, Tend)
2: leaked items ← [ ]
3: for all ei ∈ V do � ei = (i, 〈REQ, σREQ〉, Li)
4: if Verify(pkj , REQ, σREQ) = 1 then
5: if Li = H(Li−1||REQ) then
6: if REQ.r ∈M and
7: Tbegin ≤ REQ.ts ≤ Tend then
8: leaked items.add(REQ.D)
9: end if
10: else
11: return ⊥
12: end if
13: else
14: return ⊥
15: end if
16: end for
17: return leaked items
18: end procedure

7. ANALYSIS
In this section we analyze the security of our approach

and its communication and computational complexity. We
also analyze the quality of leakage determination of our con-
struction to show that it is not an all-or-nothing approach.

7.1 Security
The distributed log satisfies the security requirements dis-

cussed in Section 5.

7.1.1 Tamper-resistance
Each log entry ei = (i, 〈REQ, σREQ〉, Li) contains a signature

σREQ and a hashed value Li that links the ith entry with the
(i − 1)th. An attacker is not able to break cryptographic
primitives, therefore he cannot modify REQ and generate a
valid signature σREQ. Any addition or removal of entries in

the log is detected by the hash chain values L0, . . . , Li−1, Li,
where L0 is a root value, because an attacker cannot gen-
erate a new REQ′i such that H(Li−1||REQ′i) = H(Li−1||REQi).
Lastly, an attacker cannot forge the history of the log (e.g.,
providing a log with a consistent hash chain but containing
fake entries), because each entry ei contains the signature
of a client and the attacker cannot forge it. The only entry
that does not require a client signature is the upload of an
execution node. However, this operation is considered valid
only if a client request containing a write(ID) has been ac-
cepted, which cannot be forged by the attacker. This attack
is also detectable in case of untrusted clients as discussed in
Section 6.1.4.

7.1.2 Availability
Our solution is based on PBFT and it survives Byzantine

failures when the total number of nodes is 3f+1. Therefore,
even if an attacker compromises f machines (i.e., worst-case
scenario) and additionally f other machines fail (e.g., hard-
ware failure), it is still possible to access f + 1 untampered
logs from the remaining non-faulty machines.

7.1.3 Trustworthiness
An attacker wants to remotely forge the log of non- com-

promised nodes by convincing them to append requests that
have never been requested by clients. The attacker can
achieve only by being the primary node and if he fulfills one
of the following requirements: 1) forge a client’s private key
or 2) control 2f + 1 nodes. In the former case, an attacker
cannot forge a client signature, because he has no access
to his private key sk and he cannot break cryptographic
primitives. In the latter case, the attacker can compromise
at most f nodes, which is not enough to convince all non-
compromised nodes that fake events really happened (the
safety property of PBFT).

7.1.4 Completeness
The distributed log is complete if all the accesses to plain-

text data are recorded by non-compromised nodes. Every
time a request is processed and data is reconstructed in
plaintext to an execution node, all non-compromised nodes
log the event. If an attacker wants to access data in plaintext
without being recorded, he needs to collect enough shares si
in order to reconstruct the data. He can access at most f
shares for each item in the system. However, f < f + 1,
where f + 1 = t, so Combine({si}fi=1) → ⊥. Therefore, he
cannot access any data item without any help from at least
a non-compromised node, which logs every time it sends a
share and it does that only upon valid requests.

7.2 Communication and Computation Com-
plexity

Our approach describes two types of requests: the upload
of data and the computation over data. Both request types
use PBFT to verify and to log requests, so their communi-
cation complexity is O(n2) per request. This is caused by
the nodes broadcasting the request in the prepare and com-
mit phase, as shown in Figure 1a. The remaining phases for
both query types, shown in Figure 1b and Figure 1c, are
responsible for transmitting shares over the network and
their communication complexity is O(n). The computa-
tional complexity to split a data item in t-out-of-n shares
is O((n − t)t) [29]. In our case, we have t = f + 1. The

490



communication complexity of the distributed protocol used
to select the execution node is O((f + 1)n), because f + 1
(or t) nodes broadcast their values to every node once their
commitment has been selected.

The above complexity analysis only considers the addi-
tional overhead imposed by our approach when used on top
of an existing service. The plaintext operations of the spe-
cific underlying service that are performed by the execution
node are excluded in our analysis.

7.3 Quality of Leakage Determination
Recall that we have shown in Section 7.1 that our ap-

proach reliably determines data leakage, which was the goal
of this work. So, in principle, we could stop here as we have
achieved our goal. However, it does not prevent leakage be-
cause data is processed in the clear by the execution node
(which might be compromised). Looking at our construc-
tion, we notice that it can still happen that all data leaks or
that nothing leaks to an attacker. For instance, assume that
an attacker manages to access all data in our system. In this
case, our mechanism accurately and reliably determines the
data leakage as 100%. Therefore, in order to evaluate where
our approach lies between “all data has leaked” as opposed
to “nothing has leaked”, we would like to evaluate the ex-
pected data leakage in our system. More precisely, we want
to evaluate the quality of leakage determination, which we
define as the expected leakage in the system in the worst-
case attack scenario. Recall that, following our adversary
model (as defined in Section 5), our worst-case attack sce-
nario is met when an attacker has fully compromised exactly
f (out of n) nodes.

While the worst-case attack scenario is fixed in our ad-
versary model, the expected leakage clearly depends on the
concrete application setting we deploy our system in. Due
to this dependence, evaluating the quality of leakage deter-
mination is not feasible in general terms. However, there is
a specific category of applications for which the quality of
leakage determination can be accurately evaluated without
looking at individual applications within this category. We
do our analysis of the quality of leakage determination for
this category of applications which can be described by the
following representative setting.

Consider a setting in which users are associated with a
specific set of data items. The users can run computations
only on their own dataset, and the computations are in-
dependent events. A very important example is a client-
server authentication as discussed in Section 8. Moreover,
let us assume an attacker controls f nodes during the whole
system lifetime, which is the worst-case scenario of our ap-
proach. For this setting, we can derive a formula that allows
us to compute the expected data leakage. Specifically, we
can compute the number of distinct clients/users that would
have their data leaked. We assume each user i requests mi

computations on his data during the whole system lifetime.
A user’s dataset is considered leaked if at least one compu-
tation out of mi is reconstructed on a compromised node.
Since the execution node is selected uniformly at random, a
user’s dataset is leaked with probability p = 1− (1− f

n
)mi ,

where n is the total number of nodes and f is the number
of compromised nodes. The leakage of a user’s dataset is
an event (X) with two possible outcomes: either it is leaked
(1) or it is not leaked (0). The expected data leakage for a
user’s dataset matches with the probability of its dataset to

be leaked. So, if M is the entire population of users in the
system, the expected data leakage is:

E[X] =

M∑
i=1

1− (1− f

n
)mi (1)

Overall, this shows that our approach is, on average, bet-
ter than just saying that all or nothing has leaked. In Sec-
tion 8.2, we evaluate a specific real-world application sce-
nario using equation (1).

8. APPLICATION: CLIENT-SERVER
AUTHENTICATION

In this section we evaluate the efficiency and the qual-
ity of our leakage determination approach in the setting of
authentication. We have chosen this type of application be-
cause credentials are often a major target of data breaches.
A specific example is the recent case of LinkedIn that, de-
spite knowing they have been compromised in 2012, they
were not able to determine the data leakage. Their esti-
mate was around 7 million records. Only in 2016, when the
attacker sold the data online, they realized that the leak-
age affected around 160 million records [17]. In biometric
authentication, the data is even more sensitive because it
cannot be changed, and determining its leakage is essential
for customers to prevent identity theft.

We evaluate password-based, biometric-based and PUF-
based (Physical Unclonable Function) authentication. These
authentication mechanisms represent the three authentica-
tion categories: something we know, something we are and
something we have, respectively. All three types of authen-
tication involve a registration phase, where users or devices
register their authentication token. In the specific case of
biometrics, the token is a biometric template of a physiolog-
ical or behavioral user characteristics, whereas in the PUF
case, the token is a challenge-response pair [32].

8.1 Efficiency of Our Approach
Our approach is based on two main building blocks, AONT-

RS [29] and PBFT [5], whose performance and functionali-
ties have been already verified in literature and are adopted
in practice [29, 4]. We believe an implementation would not
improve the understanding of our solution. However, we es-
timate the efficiency of our approach to show its feasibility.
Our analysis considers the case of normal operations, where
there are no compromised nodes. We consider nodes to run
operations in sequence and we do not consider any proto-
col optimizations, especially for PBFT. We are aware that
this estimate does not reflect the real efficiency. However,
we believe the estimate suffices to give an indication on the
feasibility of integrating our approach.

We estimate the efficiency our approach in a biometric-
based authentication such as iris recognition [8]. Let us con-
sider a scenario where iris scanners (on company premise)
are trusted clients, which have a RSA 2048-bit key pair and
communicate through a 100Mbits network link with n nodes.
Nodes are also connected with a 100Mbits network link. A
biometric-based authentication, with our approach, would
work as follows: first the client uploads the iris feature vec-
tor, then it requests a comparison between the recently up-
loaded vector and the one uploaded at registration time. If
the feature vector would not be uploaded in a separate step,
but sent in the clear within the query request, it would be
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automatically leak to any node. Thus, each phase of the
PBFT consensus mechanism (Figure 1a) is run twice, while
phases of data upload (Figure 1b) and computation (Fig-
ure 1c) are run only once. We calculate the estimate by
summing the time to transfer each message from one party
to another, and the time to validate the signatures. We con-
sider all operations to be in sequence, for instance if four
nodes have to validate a signature, we sum four times the
validation time.

Table 1 shows that PBFT is the bottleneck of our ap-
proach. When there are four nodes, during one instance of
PBFT 29 messages are transmitted over the network. Mes-
sages are upload or query requests. Since an authentication
attempt needs two requests, the number doubles2. Due to
the communication complexity of O(n2), the performance
of PBFT quadratically degrades as the number of nodes in-
creases. The upload and computation phases, which send
shares3 over the network, do not influence the performance
much and their overhead linearly increases with the number
of nodes. The low overhead is a consequence of the small
number of messages, the small size of the reconstructed item
(an iris feature vector of 256 bytes [8]), and the encoding
performance of AONT-RS [29].

Considering the performance values shown in Table 1, we
believe this approach is efficient enough to be integrated in
existing biometric-based authentication applications. More-
over, our estimation does not take into account PBFT op-
timizations, the parallelization of operations, and the fact
that only f + 1 shares are needed to perform computations
and not n. This approach is also practical in password-based
and PUF-based solutions given the fact that they run the
same number of requests and transmit smaller shares.

8.2 The Quality of Leakage Determination in
a Real-World Application

In this section we show by using a real-world example that
our approach is not an all-or-nothing approach. Undoubt-
edly, a nothing approach is the ideal scenario. However,
this is not (yet) achievable in practice, since required cryp-
tographic techniques (e.g., FHE or MPC) are not efficient
enough in most practical applications. The remaining op-
tion is to consider all data to be leaked, which is the other
extreme case.

Our approach explores a middle-ground between the two
approaches, where the company might still suffer a leak-
age of data but it can precisely prove to the authorities,
through reliable evidence, what has been leaked. We show
that our approach is not all-or-nothing by determining the
data leakage using equation (1) in the setting of a real-world
application. The same equation can be used by operators
to understand the behavior of their application under the
proposed distributed systems and understand its possible

2For this use case, we assumed the upload requests to be
276 bytes, and the query requests to be 288 bytes. In both
requests, 256 bytes represents the digital signature. The
different size between the two request is due to the larger
amount of arguments in the query requests.
3The data that we secret share is composed by 256 bytes of
the iris feature vector, plus additional 64 bytes needed for
AONT-RS [29]. For this use case shares have the following
size: 160 bytes (4 nodes), 106 bytes (7 nodes), 80 bytes
(16 nodes), because the size of shares is dependent to the
threshold value t, such that data

t
[29].

(a) Quality of leakage determination with n = 4 and f = 1 in 5
years, for a compromise time of 256 days [1] .

(b) Quality of leakage determination in 2013 with number of
nodes: n = 4, 7, 10, 16.

Figure 2: Representation of our quality of leakage determi-
nation in the setting of the ePrint service of CS faculty.

benefits a priori.

8.2.1 Real-world Example
We consider a currently centralized real-world application

such as the internal ePrint web service of the entire faculty of
Computer Science at an international university. We evalu-
ate the quality of leakage determination if this service would
be integrated with our solution. We analyze the authenti-
cation log, which contain over 10 years of login information.
We consider the time of compromise to be 256 days, which,
according to a recent study on data breaches [1], has been
identified as the average time to identify a data breach.

We apply the model discussed in Section 7.3 to our password-
based authentication dataset, where we consider the user’s
dataset as the user’s password.4 A user computation is a
login, in which the user requests the system to compare
whether the provided password matches the stored password

4The term password can be substituted with other authenti-
cation tokens such as fingerprints for a biometric-based sce-
nario, or the one-time challenge-response pair for the PUF-
based scenario.
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Nodes PBFT protocol (2x) Upload Computation Total time Op/s

n=4, f=1 1.5ms 0.1ms 0.1ms 1.7ms 588
n=7, f=2 3.7ms 0.2ms 0.2ms 4.1ms 243

n=16, f=3 21.2ms 0.5ms 0.4ms 22.1ms 45

Table 1: Estimates of the additional overhead (per authentication) caused by our approach for an iris recognition application.
The column ‘PBFT protocol’ represents the protocol steps in Figure 1a, while ‘Upload’ and ‘Computation’ represent the steps
depicted in Figure 1b and Figure 1c, respectively. Their time estimates are computed for different number of nodes.

or not. We extracted the amount of logins (mi) for each of
the 2330 users, and we computed the overall expected data
leakage with equation (1).

Figure 2a represents the average quality of leakage de-
termination in case an attacker would have compromised f
nodes (i.e., n = 4 and f = 1) for a period of 9 months (i.e.,
256 days). We computed this value over the last 5 years
data and it is possible to see how the leakage of the entire
user base is determined to be lower than 9%. If we consider
only the set of users that logged in at least once, the leakage
is at most 68%. In both cases, it is clear that our solution
is not an all-or-nothing approach.

We have also analyzed the unrealistic worst-case scenario
where we consider an attacker to compromise f nodes for the
entire 10 years. In this case, 32,5% of the entire dataset is
leaked, while if we consider only users who logged in at least
once, the leakage is 86,4%. Therefore, even in the unrealistic
setting of 10 years of compromise, our solution proves to not
be all-or-nothing.

Figure 2b depicts the quality of leakage determination
from the log data of 2013 considering a different numbers
of nodes. As expected, a lower number of compromised
nodes results in less data leakage. Finally, it is worth not-
ing that the determination of leakage in the worst-case sce-
nario, where f nodes are controlled by the attacker, slightly
increases with the number of nodes. This is due to the dif-
ferent ratio of f

n
(e.g., 1

4
= 0.25, 5

16
= 0.31).

This evaluation holds also for biometric-based and PUF-
based authentication scenarios, because also in these cases
one token is reconstructed for each authentication. In pass-
words and PUFs cases it is possible to update of authenti-
cation tokens after a fixed period of time, such that leaked
data becomes useless. This computation can help in defin-
ing such policy. For instance, an operator can learn from
the computation the subset of users whose passwords are
more prone to be leaked in case of compromise. With this
very specific information, the operator can define a policy
to enforce a change of password for this specific set of users,
so that the leaked data can become useless for the attacker.

9. DISCUSSION
Other Applications. Our approach is not limited to au-
thentication applications. Any service running computa-
tions over data, can be integrated with our approach. It
is important to notice that our solution moves the data over
the network every time a computation is requested, there-
fore applications that are often computing on big data items
(e.g., hundreds of megabytes) can suffer severe performance
issues. A possible solution for those application could be to
encrypt the data with a symmetric encryption scheme and
secret share the secret key. The storage requirements would
increase (e.g., an encrypted copy of each item on each node),

but the network performance would significantly improve.

Practicality. Compromising a central server containing
sensitive data is very often a complicated task and it re-
quires time, because the infrastructure is often well pro-
tected. Nonetheless, central servers are still being compro-
mised. A distributed solution, protected with the same de-
gree of attention, makes it harder for an attacker to achieve
his goal, because compromising one machine is not enough.
This preserves the functionality of the system for a longer
period (i.e., determination of leakage), and it exposes the
attacker to higher risk of detection because it has to try ad-
ditional attacks. This holds if the system is heterogeneous.

The major limitations of our system is inherent to the
quadratic overhead of PBFT. Scaling to a huge number of
nodes would make it incredibly difficult for an attacker to
compromise the entire system, making the system very se-
cure. Unfortunately, despite the fact that there are more
efficient Byzantine fault tolerant consensus protocols than
PBFT, there are still scalability issues. The new approaches
to consensus used in cryptocurrencies, such as Proof-of-Work
[28] and Proof-of-Stake [27], might be an alternative that can
solve the problem of scalability. However, these techniques
introduce new problems (e.g., consumption of resources)
that can limit the practicality of our solution. Nonetheless,
investigating these alternatives is a topic for future research.

Finally, considering the performance estimate of our ap-
proach, we believe our system is practical for a small num-
ber of nodes. We also consider it practical when it comes
to keeping the system heterogeneous, because it is possible
to install different OSs, instantiate different root passwords
etc. for few machines.

10. RELATED WORK
Most of the work on the topic of data leakage focus on

prevention. One of the most obvious approaches for leakage
prevention is cryptography [12, 34]. Data Leakage Preven-
tion (DLP) [25, 24, 36] is another category of techniques.
All these approaches are not capable of determining the data
leakage in case the prevention fails (in case they prevent it,
the leakage is nothing).

Other research areas such as secure storage and data prove-
nance are closer to achieve the determination of data leak-
age. Strunk et al. [31] proposed a self-securing storage that
tracks and logs all the modifications to the data stored in
the system, unless the attacker can compromise the host
operating system. However, to determine the data leakage
is important to log the access to all files and this informa-
tion is not logged. If an attacker opens a file and reads
its content, the operation is not logged as evidence. Other
secure versioning solutions such as [33] have the same prob-
lem, and it is not known how much this would impact the
system performance, especially on platforms performing a
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lot of computations.
Provenance-aware systems are more promising solutions

for data leakage determination because they aim to collect,
store and manage the history of every single data object in
the system. The term provenance refers to the history of
ownership of an object. The vast majority of works on data
provenance [18, 14, 22, 21, 11] are not designed to resists
malicious adversaries, which makes them unusable in case of
system compromise (one of our main assumptions). Pohly et
al. [26] proposed Hi-Fi, a provenance-aware system that col-
lects provenance through the Linux Security Module, which
mediate any data manipulating operation on kernel objects.
Hi-Fi protects the integrity provenance data against adver-
saries in user-space by using additional hardware such as
read-only storage. Although this allows for the investiga-
tion or detection of a compromised system, it does not help
the determination of data leakage because an attacker can
append new fake entries to the provenance log. Additionally,
protecting from user-space attacker is a weaker model. Zhou
et al. [35] introduced secure network provenance (SNP), a
technique that provides forensic capabilities to an untrusted
networked system, where a subset of nodes can be fully com-
promised. SNP allows an administrator to identify faulty
nodes and to explain any unexpected state change on any
node. SNP focuses more on tracking faulty nodes and pro-
vide evidence for it, rather than determining what data has
been accessed and possibly leaked. Bates et al. [2] have
recently presented the only solution capable of collecting
data provenance against a strong adversary, which could be
used to determine what data has been leaked. The Linux
Provenance Module (LPM) allows a secure provenance col-
lection of processes, network activities and the kernel itself.
Through the analysis of the provenance graph, it would be
possible to determine the data leakage. However, the secu-
rity of the whole system mainly relies on trusted hardware,
and it is known that the storage and analysis of months (or
years) of collected provenance data is still a severe practical
problem.

11. CONCLUSION
We presented an approach to determine data leakage us-

ing a reliable distributed log as digital evidence. Our work
reliably determines data leakage even in the presence of pow-
erful attackers that are capable of taking complete control
of one or more machines. In contrast to previous work in
this strong attacker model, we do not require any trusted
hardware. We have demonstrated the quality in leakage de-
termination of our solution on real-world data; showing that
it is not an all-or-nothing approach.

Given that we use well-known building blocks that have
been demonstrated to work in practice [29, 4] and based on
the values obtained from a worst-case estimation of our pro-
tocol, we believe our solution can be integrated with existing
(authentication) services.
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